Molecular Morphology of Pituitary Cells, from Conventional Immunohistochemistry to Fluorescence Imaging
نویسندگان
چکیده
In situ hybridization (ISH) at the electron microscopic (EM) level is essential for elucidating the intracellular distribution and role of mRNA in protein synthesis. EM-ISH is considered to be an important tool for clarifying the intracellular localization of mRNA and the exact site of pituitary hormone synthesis on the rough endoplasmic reticulum. A combined ISH and immunohistochemistry (IHC) under EM (EM-ISH&IHC) approach has sufficient ultrastructural resolution, and provides two-dimensional images of the subcellular localization of pituitary hormone and its mRNA in a pituitary cell. The OPEN ACCESS Molecules 2012, 17 S2 advantages of semiconductor nanocrystals (quantum dots, Qdots) and confocal laser scanning microscopy (CLSM) enable us to obtain three-dimensional images of the subcellular localization of pituitary hormone and its mRNA. Both EM-ISH&IHC and ISH & IHC using Qdots and CLSM are useful for understanding the relationships between protein and mRNA simultaneously in two or three dimensions. CLSM observation of rab3B and SNARE proteins such as SNAP-25 and syntaxin has revealed that both rab3B and SNARE system proteins play important roles and work together as the exocytotic machinery in anterior pituitary cells. Another important issue is the intracellular transport and secretion of pituitary hormone. We have developed an experimental pituitary cell line, GH3 cell, which has growth hormone (GH) linked to enhanced yellow fluorescent protein (EYFP). This stable GH3 cell secretes GH linked to EYFP upon stimulation by Ca influx or Ca release from storage. This GH3 cell line is useful for the real-time visualization of the intracellular transport and secretion of GH. These three methods from conventional immunohistochemistry and fluorescence imaging allow us to consecutively visualize the process of transcription, translation, transport and secretion of anterior pituitary hormone.
منابع مشابه
Molecular morphology of pituitary cells, from conventional immunohistochemistry to fluorescein imaging.
In situ hybridization (ISH) at the electron microscopic (EM) level is essential for elucidating the intracellular distribution and role of mRNA in protein synthesis. EM-ISH is considered to be an important tool for clarifying the intracellular localization of mRNA and the exact site of pituitary hormone synthesis on the rough endoplasmic reticulum. A combined ISH and immunohistochemistry (IHC) ...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملNoninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI
Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...
متن کاملA Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملBlastic Plasmacytoid Dendritic Cell Neoplasm; A Report of Three Cases
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematodermic myeloid malignancy that is known to be derived from plasmacytoid dendritic cells which are characterized by expression of CD4, CD56, and more specific markers such as CD123. Here, the authors present three cases of BPDCN diagnosed in the past two years and address different available diagnostic modalities such as morpho...
متن کامل